23 research outputs found

    Energy-Efficient Resource Allocation in Wireless Networks: An Overview of Game-Theoretic Approaches

    Full text link
    An overview of game-theoretic approaches to energy-efficient resource allocation in wireless networks is presented. Focusing on multiple-access networks, it is demonstrated that game theory can be used as an effective tool to study resource allocation in wireless networks with quality-of-service (QoS) constraints. A family of non-cooperative (distributed) games is presented in which each user seeks to choose a strategy that maximizes its own utility while satisfying its QoS requirements. The utility function considered here measures the number of reliable bits that are transmitted per joule of energy consumed and, hence, is particulary suitable for energy-constrained networks. The actions available to each user in trying to maximize its own utility are at least the choice of the transmit power and, depending on the situation, the user may also be able to choose its transmission rate, modulation, packet size, multiuser receiver, multi-antenna processing algorithm, or carrier allocation strategy. The best-response strategy and Nash equilibrium for each game is presented. Using this game-theoretic framework, the effects of power control, rate control, modulation, temporal and spatial signal processing, carrier allocation strategy and delay QoS constraints on energy efficiency and network capacity are quantified.Comment: To appear in the IEEE Signal Processing Magazine: Special Issue on Resource-Constrained Signal Processing, Communications and Networking, May 200

    A Non-Cooperative Power Control Game in Delay-Constrained Multiple-Access Networks

    Full text link
    A game-theoretic approach for studying power control in multiple-access networks with transmission delay constraints is proposed. A non-cooperative power control game is considered in which each user seeks to choose a transmit power that maximizes its own utility while satisfying the user's delay requirements. The utility function measures the number of reliable bits transmitted per joule of energy and the user's delay constraint is modeled as an upper bound on the delay outage probability. The Nash equilibrium for the proposed game is derived, and its existence and uniqueness are proved. Using a large-system analysis, explicit expressions for the utilities achieved at equilibrium are obtained for the matched filter, decorrelating and minimum mean square error multiuser detectors. The effects of delay constraints on the users' utilities (in bits/Joule) and network capacity (i.e., the maximum number of users that can be supported) are quantified.Comment: To apprear in the proceedings of the 2005 IEEE International Symposium on Information Theory, Adelaide, Australia, September 4-9, 200

    Energy-Efficient Resource Allocation in Wireless Networks with Quality-of-Service Constraints

    Full text link
    A game-theoretic model is proposed to study the cross-layer problem of joint power and rate control with quality of service (QoS) constraints in multiple-access networks. In the proposed game, each user seeks to choose its transmit power and rate in a distributed manner in order to maximize its own utility while satisfying its QoS requirements. The user's QoS constraints are specified in terms of the average source rate and an upper bound on the average delay where the delay includes both transmission and queuing delays. The utility function considered here measures energy efficiency and is particularly suitable for wireless networks with energy constraints. The Nash equilibrium solution for the proposed non-cooperative game is derived and a closed-form expression for the utility achieved at equilibrium is obtained. It is shown that the QoS requirements of a user translate into a "size" for the user which is an indication of the amount of network resources consumed by the user. Using this competitive multiuser framework, the tradeoffs among throughput, delay, network capacity and energy efficiency are studied. In addition, analytical expressions are given for users' delay profiles and the delay performance of the users at Nash equilibrium is quantified.Comment: Accpeted for publication in the IEEE Transactions on Communication

    A Game-Theoretic Approach to Energy-Efficient Modulation in CDMA Networks with Delay QoS Constraints

    Full text link
    A game-theoretic framework is used to study the effect of constellation size on the energy efficiency of wireless networks for M-QAM modulation. A non-cooperative game is proposed in which each user seeks to choose its transmit power (and possibly transmit symbol rate) as well as the constellation size in order to maximize its own utility while satisfying its delay quality-of-service (QoS) constraint. The utility function used here measures the number of reliable bits transmitted per joule of energy consumed, and is particularly suitable for energy-constrained networks. The best-response strategies and Nash equilibrium solution for the proposed game are derived. It is shown that in order to maximize its utility (in bits per joule), a user must choose the lowest constellation size that can accommodate the user's delay constraint. This strategy is different from one that would maximize spectral efficiency. Using this framework, the tradeoffs among energy efficiency, delay, throughput and constellation size are also studied and quantified. In addition, the effect of trellis-coded modulation on energy efficiency is discussed.Comment: To appear in the IEEE Journal on Selected Areas in Communications (JSAC): Special Issue on Non-Cooperative Behavior in Networking, August 200

    A Game-Theoretic Approach to Energy-Efficient Modulation in CDMA Networks with Delay Constraints

    Full text link
    A game-theoretic framework is used to study the effect of constellation size on the energy efficiency of wireless networks for M-QAM modulation. A non-cooperative game is proposed in which each user seeks to choose its transmit power (and possibly transmit symbol rate) as well as the constellation size in order to maximize its own utility while satisfying its delay quality-of-service (QoS) constraint. The utility function used here measures the number of reliable bits transmitted per joule of energy consumed, and is particularly suitable for energy-constrained networks. The best-response strategies and Nash equilibrium solution for the proposed game are derived. It is shown that in order to maximize its utility (in bits per joule), a user must choose the lowest constellation size that can accommodate the user's delay constraint. Using this framework, the tradeoffs among energy efficiency, delay, throughput and constellation size are also studied and quantified. The effect of trellis-coded modulation on energy efficiency is also discussed.Comment: Appeared in the Proceedings of the 2007 IEEE Radio and Wireless Symposium, Long Beach, CA, January 9-11, 200

    A Non-Cooperative Power Control Game for Multi-Carrier CDMA Systems

    Full text link
    In this work, a non-cooperative power control game for multi-carrier CDMA systems is proposed. In the proposed game, each user needs to decide how much power to transmit over each carrier to maximize its overall utility. The utility function considered here measures the number of reliable bits transmitted per joule of energy consumed. It is shown that the user's utility is maximized when the user transmits only on the carrier with the best "effective channel". The existence and uniqueness of Nash equilibrium for the proposed game are investigated and the properties of equilibrium are studied. Also, an iterative and distributed algorithm for reaching the equilibrium (if it exists) is presented. It is shown that the proposed approach results in a significant improvement in the total utility achieved at equilibrium compared to the case in which each user maximizes its utility over each carrier independently.Comment: To appear in Proceedings of the 2005 IEEE Wireless Communications and Networking Conference, New Orleans, LA, March 13 - 17, 200

    Chip equalization and transmit antenna diversity for high-speed SS/TDM systems

    No full text
    grantor: University of TorontoHybrid Spread Spectrum/Time Division Multiplex (SS/TDM) is a promising scheme for the air interface of future high-speed wireless packet-based networks, especially for the downlink. In this thesis, we first present an alternative receiver to the Rake for the downlink of SS/TDM systems. This receiver, which consists of a Fractionally Spaced Chip Equalizer (FSCE) and a despreader, is shown to have superior performance to the conventional Rake receiver and can be used in systems with long spreading codes. We propose an adaptive implementation of the FSCE receiver and use simulations to study the effect of various system parameters on the performance of the receiver. In addition, for channels with short delay spread in which spread spectrum does not provide enough diversity to combat fading; we combine chip equalization with transmit antenna diversity to achieve both interference suppression and robustness against fading. We demonstrate the performance of the combined scheme using simulations.M.A.Sc
    corecore